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Abstract: Steelmaking is the second step in producing steel from iron ore. In this stage, impurities such as sulfur, 

phosphorus, and excess carbon are removed from the raw iron, and alloying elements such as manganese, nickel, chromium, 

and vanadium are added to produce the exact steel required. Modern steelmaking processes are broken into two categories: 

primary and secondary steelmaking. Primary steelmaking uses mostly new iron as the feedstock, usually from a blast furnace. 

Secondary steelmaking uses scrap steel as the primary raw material. Gases created during the production of steel can be used 

as a power source. Steelmaking is presently a grounded innovation driven by plant, exploratory and computational 

examination. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer, and 

structural deformation. The important numerical modeling method of the continuous casting process has been discussed in 

reference in this work. With the recent advancement in metallurgical methods, the continuous casting process now becomes the 

main method for steel production. To achieve efficient and effective production, the manufacturers of steel keep on searching 

for new methods which increase productivity. The present work describes molten steel flow, heat transfer, solidification, 

electromagnetic applications, formation of the shell by solidification and coupling, etc. 
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1. Introduction 

Steelmaking is presently a grounded innovation driven by 

plant, exploratory and computational examination. The 

purpose for this is the benefits that accompany the nonstop 

projecting cycle which incorporates cost-saving, high 

efficiency, and better quality [1-6]. To achieve efficient and 

effective production, the manufacturers of steel keep on 

searching for new methods which increase productivity. One 

such kind of method has become more popular to use 

optimizing using numerical modeling. The continuous 

casting process comprises many complicated phenomena in 

terms of fluid flow, heat transfer and structural deformation 

[7-17]. The important part and process of continuous casting 

have been modeled in-depth and discussed in reference [18]. 

It describes molten steel flow, formation of the shell by 

solidification. Further, the distortion of strand by thermo-

mechanical forces, bulging, bending and crack prediction has 

been also given in detail. Till now, many powerful pre-coded 

solvers are available in the market. The numerical simulation 

of the thermo-mechanical behavior of the continuous casting 

process is important in terms of achieving a quality product 

[19-26]. 

This part of simulation comes with many obstacles such as 

dealing with the highly non-linear constitutive laws of 

structure, incorporation of latent heat, involvement of three 

different states of material: liquid, mushy and solid, 

temperature-dependent material properties, irregular contact 

between the mold surface and solidified strand, and coupling 

the heat transfer and structure model with proper continuum 

mechanism and boundary condition [27]. Reynold’s 

Averaged Navier– Stokes (RANS) method has been widely 

adopted for turbulence modeling. It has been reported that the 

RANS model is highly accurate in predicting steady-state 

flow patterns [23]. The research work done in the last three 

decades has made continuous casting an advanced and 

sophisticated technology [18, 28-30]. Physical water models 

can simulate the molten steel flow in the mold region of the 

continuous casting process considering the viscosity of water 

equivalent to steel [31-35]. Several research works have been 
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done on molten steel flow, heat transfer and solidification in 

mold [33-38]. These studies have been established and 

validated with industrial trials [7, 28, 39-42]. From all 

previous studies, it is well established that numerical models 

efficiently and accurately predict the fluid flow and 

mechanical behavior of mold and strand, respectively [31, 

32]. In this present work, we have reviewed the literature to 

provide current information on the mathematical modeling of 

steelmaking tundish. 

2. Computer Modeling of Mass Flow 

The molten steel flow in continuous casting mold is 

usually assumed to have some characteristics. These flow 

characteristics are classified based on some assumptions such 

as compressible and incompressible. The molten steel flow is 

governed by the continuity equation and momentum 

equation, supplemented by heat transfer boundary conditions 

[43-45]. The governing equations related to mass flow and 

momentum transfer are as follows [46]; ∇ ⋅ � = 0                                     (1) 

� ��	�
 + (� ⋅ ∇)�� = � − ∇� + �∇��             (2) 

In 2005, Zhao et al. [47] studied the transient molten steel 

flow and superheat transport in a continuous casting mold. 

The equation for momentum calculation was used as follows. 

�� ��	‾ ��
 + ��	‾ �	‾����� � = 	− ��‾��� + ���� �� �	‾ ����� + �������	+ !"��#($‾ − $�)%        (3) 

Further momentum equation was modified by using a sub-

grid momentum flux term Qij. 

where, &!' = ����‾ !�‾' − �‾ !�‾'� Turbulence modeling       (4) 

Most of the previous work on continuous casting mold has 

been modeled using the RANS equation [47]. Therefore, 

turbulent viscosity was predicted for the Large Eddy 

Simulation (LES) model from the following equation. 

�( = )*��+,-/�Δ                                       (5) 

where the constant )* is 0.05, and Δ is the grid-length scale, 

given by Δ = �Δ�Δ2Δ3�-/"�Δ� , Δ2 , and Δ5  are grid sizes in 

the 6, 7, and 8 directions, respectively). 

To understand the complex flow profile in mold, Li and 

Tsukihashi [48] have developed a numerical model to 

investigate the vortexing flow in SEN of continuous casting 

of steel. To describe the behavior of vortices in the flow field, 

definitions of the vorticity 95 was expressed as follows, 

95 = -� ��	:�� − �	;�< �                          (6) 

Sowa and Bokota [49] have assumed viscous 

incompressible and laminar flow to describes flow patterns in 

mold. They proposed the following equation for mass and 

momentum calculation. ∇. = = 0                                           (7) 

� >?>
 = �g − ∇� + �∇�v                               (8) 

In a similar work in 2013, Zare et al. [50] investigated the 

molten steel flow filed in the mold under various conditions 

of submerged entry nozzle. In their work, the following 

momentum equation was solved; 

��B*�*���C� = − ���C� + ��C� D�EFF ��*��C� + �*��C��G + �%' + H'  (9) 

In the above equation, Zare et al. (2013) [50] used the 

effective viscosity term in the momentum equation. The 

terms k and ε for turbulent viscosity were predicted from two 

equations of the standard k-ε model. It was expressed as 

follows. �EFF = � + �
                                    (10) �
 can be calculated using I − J parameters: 

�
 = )K� LMN                                      (11) 

The modified equation for momentum was given as 

follows [44]; 

��
 (��) + ∇ ⋅ (���) = −∇� + ∇ ⋅ O(�ℓ + �
)∇�Q + �% +
�%#($ − $�) + �-RFliq �MFliq 

S T�.��-Umush (� − �V) + Have  (12) 

In the above equation, fliq the liquid fraction. The lever rule 

of solidification was utilized to calculate the mushy zone as 

follows. 

�W!X = 1 − --RLZ (R([�\(R(]^[_                         (13) 

One such popular model that works on the above-

mentioned method is the k-ε model Further, more details on 

the mathematical modeling of multi-phase fluid flow can be 

read elsewhere [20, 51-53]. 

Comparative studies have been carried out by many 

researchers to investigate the influence of various turbulence 

models on the estimation of results [54–59]. Siddiqui et al., 

[60] compared different turbulence models and predicted 

results revealed that the RNG k-ε model has a good 

approximation. The equations of motion for I  phase in an 

Euler-Euler simulation are generally given as follows: 

�(`aBa)�
 + ∇ ⋅ (bL�L�L) = 0�(`aBa	a)�
 + ∇ ⋅ (bL�L�L�L)= −∇ ⋅ (bLcL) − bL∇d + bL�L%e +fW,L
        (14) 

The stress terminology of k phase can be written as: 

cL = −�EFF,L �∇�L + (∇�L)( − �" I(∇ ⋅ �L)�     (15) 



 Advances in Materials 2021; 10(3): 31-41 33 

 

�EFF = �h,i + �(,- + �jW,-                         (16) 

Empirically the calculation of effective viscosity of gas 

was calculated from effective liquid velocity. 

�EF,k = BlB[ �EFF,W                               (17) 

The model proposed by Sato & Sekiguchi 	��  has been 

used to take account of the turbulence induced by the 

movement of the bubbles. The expression is: �ji,W = �!)K,jibkmkn�k − �!n                         (18) �L = �̃L − �Le                                (19) 

A numerical model has been developed to analyze the 

transient three-dimensional and three-phase flow in a bottom 

stirring ladle with a centered porous plug, which takes into 

account the steel, gas, and slag phases; it enables us to 

predict the fluid flow and heat transfer in the very important 

steel/slag region. They applied k-ɛ turbulence model [61]; 

�(BL)�
 + ��' �L��� = ���� �Kpqqra ⋅ �L���� + sL + st − �J (20) 

�(BN)�
 + ��' �N��� = ���� �Kpqqru ⋅ �N���� + �vw,aNTvM,xRvSBNM�L  (21) 

In the above relationship, Gk is the turbulent kinetic energy 

generated by mean flow velocity gradients. This can be 

written as follows; 

sL = �
 �	���� ��	���� + �	�����                       (22) 

sL = �
 �	���� ��	���� + �	�����                          (23) 

Further, Gb shows the turbulent kinetic energy generated 

by buoyancy and it can be expressed as; 

st = −% K_Byz_ �B���                               (24) 

The effective viscosity can be written as the addition of 

laminar and turbulent viscosities, as follows. 

�{|| = � + �
 = � + �}K LMN                     (25) 

The values for the constants in this I − J model }-, }�, }", }	 , ~L, and ~N are 1.43,1.92,0.09,1.00, and 1.30, respectively 

[15]. 

In 2014, Li et al. [62] developed a mathematical model to 

study the vortex formation in ladles. It is formed during 

liquid steel teeming from the ladle. They studied vortex 

formation during ladle teeming using new technology. The 

results obtained help to verify the validity of the numerical 

computations. [62] 

Turbulent kinetic energy equation (I): 
��
 (�I) + ���� (�I�!) = ���� �bL�EFF �L���� + sL + st − �J −�� + �L                                             (26) 

Turbulent dissipation rate equation (J) 
��
 (�J) + ���� (�J�!) = ���� �bN�EFF �N���� + )-N NL (sL +)"Nst) − )�N� NML − �N + �N                        (27) 

In the past, various viscosity models have been used by the 

researchers to take care of the turbulence flow in the 

continuous casting process [15, 51, 57, 63-78]. 

3. Equations for Heat Transfer and 

Solidification 

The fundamental requirement of the continuous casting 

process is to solidify the strand to achieve plant set quality 

standards [18, 30, 79-87] Generalized heat transfer equation 

(3-dimension) can be written in the most suitable format 

from the above equations in the following manner [46]; 

�) ��(�
 + �� �(�
 + �2 �(�
 + �5 �(�
� = �� + ��� �+� �(��� +��2 �+2 �(�2� + ��5 �+5 �(�5�                       (28) 

In 2005, Louhenkilpi et al. proposed a three-dimensional 

transient formulation for temperature distribution over the 

mold wall. [88]; 

� ���
 + = ���5 = ��� �Ieff 

�(��� + ��2 �Ieff 

�(�2�	+ ��5 �Ieff 

�(�5�             (29) 

In a similar work, Zhao et al. (2005) [47] modeled energy 

equation along with the Navier-Stokes equation. 

�(‾�
 + �(	‾ �(‾)��� = LBZ�� ���� ��(‾���� + �������             (30) 

&(! = $‾�‾ ! − $�����!                                  (31) 

������� = K�yz� ���� �(‾���                                  (32) 

In 2011, Sowa and Bokota [49] proposed a heat flow 

model based on the Fourier-Kirchhoff system of equations. 

�} ��((�,
)�
 + ∇$ ⋅ �� = ∇ ⋅ (�∇$) + &̇             (33) 

Sowa and Bakota et al. [49] modified the above equation 

which includes effective specific heat (Ceff) term which is a 

function of the temperature of the material. 

∇. (�Δ$) − )EF �(�
 − )EF∇$. � = 0            (34) 

)EF($) = �h�}h� + ���/($h − $�)            (35) 

In 2011, Hadata et al., [37] proposed a steady Fourier-

Kirchhoff model for heat flow with some assumptions. 

�* = &� >��>�                                   (36) 
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In a study in 1993 S. E. Chidiac et. at., [64] used enthalpy 

approach for heat transfer in multi-dimensional problem with 

following equation. 

� ���
 = ∇ ⋅ (+∇$) + &                       (37) 

where ρ indicates density, H indicates enthalpy, K indicates 

Thermal conductivity, Q indicates heat generation rate for 

unit volume, T indicates temperature and t time. Enthalpy is 

nothing but the summation of sensible & latent heat and can 

be expressed as: 

� = � }m$ + �($). �((�                        (38) 

where c, f(T) and L are specific heat liquid fraction and latent 

heat. For phase change study two methods are clubbed 

together with the above-stated formulation for accuracy and 

efficiency. Dirichlet & Cauchy boundary conditions are used 

to solve above equations. The study carried in 2003, B. 

wiwanapataphee et. al., [63] for simulating phase change 

cause of heat transfer single domain enthalpy method is 

adopted. Where enthalpy is the summation of latent heat (H) 

& sensible heat (h). 

H=h+∆H                                  (39) 

Latent heat h can be given by 

H=f(T)L,                                 (40) 

Where L denoted Latent Heat of Steel L and f(T) indicates 

localized liquid fraction where value one represents complete 

Liquids state and zero represents the complete solid-state. 

The liquid fraction is nonlinear for simplification of the 

model it is assumed linear. 

�($) = �0, $ ⩽ $�(R(�( R(¡ , $V < $ < $£,1, $ ⩾ $£, 	(XX)                       (41) 

Where in TL indicates melting temperature and TS 

Solidification temperature. 

For region where phase change occurs conservation of 

energy principle. Combining this equation with enthalpy 

gives, 

�} ��(�
 + �'$,� = �I�$'�' − �(                        (42) 

Ivanova (2013) [89] formulated extensive mathematical 

modeling on predicting phase-dependent boundary 

conditions. 

�(�¦ + =(§) ⋅ �(�5 = -v(()B(() ×	× © ��� ª�($) �(��« + ���¬ ª�($) �(�¬«­                       (43) 

The position of the unknown phase boundary is specified 

by the equality condition of the temperatures and the Stefan 

condition for the two-dimensional case: 

$ = $(c, 6, 8)|�¯°_(�,5)¯$(c, 6, 8)|�¯°²(�,5)¯(³� (44) 

�($)	�(� �́ |µT − 	�($) �(� �́ nµR = 	��	($L�)	�>°>� + =(c) >°>5� (45) 

where µ is the phase boundary 6 = µ(c, 8), ¶‾  is a normal to 

the phase boundary, 
�(�·¸°T/R  is the left-right limit of the 

temperature derivative in the normal direction. � is the latent 

the heat of crystallization. $v¦  is the crystallization 

temperature (the average temperature from the liquidus-

solidus interval). 

In 2014, Zhang et al [90] investigated a steady-state two-

dimensional numerical model based on the assumption of 

heat transfer. � = (1 − �¹)�£ + �¹��º�º + �»�»�
                   (46) 

� = (1 − �¹)�£ + �¹��º�º + �»�»�                   (47) 

}{|| = �¹ ⋅ }¹ + (1 − �¹) ⋅ }£ − � �F¼�(               (48) 

In a similar work, Maurya and Jha (2014) [91] investigated 

the effect of casting speed in the continuous casting process. 

� ���
 + �∇ ⋅ (��) = ∇�IEFF∇$� + &ℓ	                  (49) 

Where ρ is density, H is enthalpy, ∆H is sensible heat, QL 

is source term. QL can be expressed as a single solidification 

model and given as; 

&h = �� �F��
 + ���‾�	WW ⋅ ∇��                        (50) 

���� (��!) = 0                               (51) 

Naiver-Stokes equation for transient momentum 

conservation is given by 

��
 (��) + �∇(��) = −∇d + ∇½�EFF(∇ ⋅ �)¾ + � + �	 (52) 

where, 

µeff= µl +µt 

Maurya and Jha (2014) [91] and Hitanen et al. (2017) [92] 

used the enthalpy-porosity technique for solidification. 

� = (-R¿)M(¿SR°)Umush ��‾ − �‾pull �                       (53) 

where, liquid fraction is expressed as β, ξ = 0.001, mushy 

zone constant is given as Amush. 

Pilvi et. at., (2017) [65] Used turbulent flow modelling at 

inlet in which they considered hydraulic diameter at inlet. �E = �h�(1 + 6(1 − ��)�                       (54) 

In 2016, Hibbeler et al. [93] proposed an innovative 

reduced-order model (ROM) for heat transfer from mold in 

the continuous casting of steel. 
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0 = �M<mould ��∗� + �>mould Âmould 
�� �M<mould �2∗M + �>mould ℓmould 

�� �M<mould �5∗M  (55) 

Vnnyscy and Saleem (2017) [94] formulated a 

mathematical formulation for explicitly calculating the 

geometrical range of the mushy zone. 

�}Ã�ÄÅVÆ �(�5 = ��2 �I �(�2� + ��5 �I �(�5� − ��ÄÅVÆΔ�| �Ç�5 (56) 

where I = ÈI- + (1 − È)I� 
}Ã = È}ÃÉ + (1 − È)}ÃV 

A decoupled three-dimensional mathematic model of fluid 

flow and heat transfer in continuous casting billet mould was 

developed by An et al., (2018) [95]. 

��
 (��) + ���� ���'�� = ���� D�� + )� K_r_� �����G          (57) 

Ole Richter et al. (2017) [96] studied the development of 

free surface flow for the liquid and/or solid phase change. 

They considered enthalpy-porosity and volume-of-fluid 

(VOF) method. 

b- = Ê0 = gas0 < b- < 1 = cell	contains	the	interface	1 = solid	or	liquid	PCM

       (58) 

The molten steel fraction was completely dependent on the 

thermal condition (T) of liquid metal. TS and TL indicates 

same respectively. This can be expressed as follows [96]; 

Ë-,W = �0 	if	 $ < $�(R(Ì(ÍR(Ì 	if	 $Î ≤ $ ≤ $h .1 	if	 $ > $h                    (59) 

Where one indicates complete liquid state and zero 

indicates complete solid state. In between values of solid 

fraction indicates mushy zone. 

In the given formulation the density ρ, the heat capacity 

cp, the heat conduction λ and the viscosity µ can be 

expressed as follows; � = b-�Ë-,W�-,W + Ë-,��-,�� + b���                   (60) 

}� = b-�Ë-,W}�-,W + Ë-,�}�-,�� + b�}��                   (61) 

� = b-�Ë-,W�-,W + Ë-,��-,�� + b���                   (62) � = b-�-,W + b���                                     (63) 

In above equations, the subscripts l, 1, s and 2 illustatre the 

property of the bulk liquid, solid and gas phase, respectively. 

In order to consider natural convection in proposed numerical 

formulation, the Boussinesq approach was used. Further, the 

buoyancy modified density ρb can be defined as; �t = b-�Ë-,W�-,W�1 − #($ − $h)� + Ë-,��-,�� + b��� (64) 

4. Thermo-mechanical Deformation 

The behavior of metal especially steel at high temperature 

becomes sensitive to strain rate and temperature. Therefore, 

process design of hot metal working of steel is significantly 

affected by non-linear behavior of steel. Structural distortion 

arises in mold and strand due to thermal distribution, which 

causes thermal stress, cracks and ultimately affects quality 

strand [35, 97]. Many research has been done on mould 

thermal distortion in mould and strand [7, 8, 98-100]. In 

2006, To measure surface temperature and shell thickness, 

finite point method was used by Alizadeh et al. [2]. It has 

been also reported heat transfer rate is affected by mold 

distortion [98, 101]. Many research has been done on mould 

thermal distortion in mould and strand [98, 99]. Generally, 

the heat transfer equation is solved with interfacial heat flux 

data and it is quantified from plant data. Subsequently, 

equations related to thermo-mechanical distortion in mold 

and strand is calculated. mJ!' = mJ!' 	E + mJ!' 	�                         (65) 

where mJ!' 	E and dJ!'	Ò are the incremental elastic and plastic 

components of the total strain vector mJ!' 
In this work they proposed incremental stresses and strains 

during plastic flow; 

mJ!' 	Ò = m� �Ó�r��Ô                                (66) 

where dλ is a scalar multiplying factor, dY is derivative of 

yield stress and σij is the deviatoric stress vector. 

In 2000, Lee et al. [102] proposed a modified model of 

thermo-mechanical deformation in strand. They developed a 

mathematical model for the coupled analysis. The coupled 

analysis consisted of various mathematical models. The 

coupled model considered molten steel flow characteristics in 

mould. Further, it coupled the and heat transfer, thermo-

mechanical deformation behavior of a solidifying strand in 

the continuous casting process. Moreover, Von-mises yield 

function and associated flow were assumed for increment of 

stress. The stress in thermo-elasto-plastic material can related 

as; ~!' = )!'LW�JLW − JLWÒ − JLW(Õ�                      (67) 

where )!'LW , JLW , JLWÒ , and JLW(Õ  are the elastic constitutive 

matrix, total infinitesimal strain, plastic strain, and thermal 

strain, respectively. 

In a similar work, Ha et al., (2000) [79] carried a 

mathematical modeling for heat transfer study in secondary 

cooling zone of continuous casting strand. It was reported 

that creep was dominant factor in bulging defect. The elastic-

plastic creep model for the strand is given by: J̇ = b~Ö                                     (68) 

where ~(kg/cm�)  and J̇(I/s)  denote the equivalent stress 

and the creep strain rate, respectively, and Û is a constant of 3.15. Also 
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b = 0.0806exp	©− �à"á�(T�â"­                   (69) 

In 2004, Bellet et al. [8] introduced a global non-steady 

state (GNS) method for liquid-solid constitutive model which 

considered mushy zone during solidification. They reported 

the following relationship for total strain calculation in liquid 

and mushy zone; ã̇ = J̇?Ã + J̇Æä                            (70) 

where Evp is a strain in visco-plastic condition and Eth strain 

due to thermal expansion. In addition to this, a thermo-

elastic–viscoplastic model was used to represent the behavior 

in the solid state. It was described by the following equations 

[8]; J̇ = J̇{É + J̇?Ã + J̇ th	                            (71) 

In a similar work, Liu and Zhu (2006) [103] assumed 

mould copper plate should exhibit thermoelastic behavior 

and thermoelastic-plastic behaviour for strand. The isotropic 

linear elastic stress–strain relation was expressed by the 

constitutive equation as follows: ~!' = 2sJ!' + O�JLL − (3� + 2s)bΔ$Q !'     (72) 

It was reported that the total strain can be expressed as the 

sum of an elastic strain, a thermal strain, and a plastic strain 

as follows; J!' = J!'{ + J!'Ã + J!'å                             (73) 

where, temperature change ∆T may induce a thermal strain 

of a magnitude J!'å = bΔ$ !'                               (74) 

In a recent work, Li et al. (2017) [104] reported that in the 

mushy zone, the stress in solid steel is supposed to increase 

linearly with the rise in solid fraction between zero strength 

temperature (TZST) at fs=0.75 and zero Xdeformation 

temperature (TZDT) and it can be given as follows; 

~V ∗ (F¡RFæ¼ç)-RFæ¼ç                                      (75) 

where fs is solid fraction stress, fzst is stress at zero strength 

temperature. 

Several authors have predicted the probability of crack 

formation in solid strand by crack susceptibility coefficient 

SC as follows [102, 105, 106]; 

�� 	= ÓèÓé 	for	(�� ≤ �� < 1	= 0		for	0 ≤ �� < $�	= 0	for	�� ≤ 0                       (76) 

where εe elastics strain, εp Plastic Strain, εT Thermal strain. 

Thermal strain is given by 

Δ{J}å = �{b} + mOìQíîw{r}>( � m$                    (77) 

where α indicates coefficient of thermal expansion. Further 

in elastic region stress given by Δ{~} = OïQ{(Δ{J} − Δ{J}å)                    (78) 

where De Indicates Elastic-Plastic matrix. σ Indicates stress. 

Further in the plastic region the stress is given by Δ{~} = OïQep	(Δ{J} − Δ{J}å) + Δ{~}å             (79) 

Hence the thermal stress is 

Δ{~}å = OìQ³((�r‾ ��)/(�{r} �())>(�ÔT{rr‾ /�{r}}ðOì^³(�r‾ /�{r})              (80) 

where σ indicates equivalent stress at node. 

They noted that near the meniscus liquid fraction is more 

compared to bottom slab. It shows that solidification is start 

early at bottom side. Because of uneven temperature in slab 

leads to thermal strain which creates thermal stress. 

Hadata et al., [11] studied surface crack defect evaluation 

four criteria used namely plastic work criteria, Rice and 

Tracy Criteria, modified Rice and Tracy criteria and Latham 

criteria. Plastic work criteria can be given by following 

equation 

)ñÒ = �  -� J‾~‾m§	for	~Ö > 0                      (81) 

where ε indicates strain rate, σ indicates stress. This criteria 

based on assumption that crack will get generated if strain 

energy is more than critical value CEP. Plastic strain is 

evaluated only in region where mean stress is positive. 

Following is the criteria given by Rice & Tracy 

)ó( = J‾exp	�− "� ôÖr‾ �                            (82) 

where σm is mean stress & ε indicates strain. This criteria 

assumes that crack will appear if strain increases beyond CRT. 
Following is the criteria given by modified which uses 

only positive values of strain for calculation of critical 

parameter CRM. The 

)ó� = ∑ΔJ‾exp	�− "� r]r‾ � for ~Ö > 0             (83) 

For Latham Criteria equation is as follows 

)hö = ��
  ~÷ÅøJ̇ dt for ~Ö > 0                 (84) 

5. Conclusions 

Many literatures have reported about strand bulging 

between rolls which have caused transverse cracks, radial 

streaks and centerline macrosegregation [7, 8, 100]. Risso 

et al. [107] evaluated the thermal stress and strain in the 

solidifying shell of the strand by using the analytical 

method. Recently, Chen et al. (2019) [108] investigated the 

mold level fluctuations. These fluctuations are caused by 

transient bulging of the solidifying shell. Consequently, 

transient bulging phenomenon affects the quality of the 

steel. They developed a 1D and 2D model for strand 
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simulation. They reported that mold level fluctuations are 

highly caused by dynamic bulging. Several constitutive 

models have been adopted for simulating the solidification 

stresses using the simple elastic-plastic models [109, 110]. 

Researchers added a separate creep model for transient 

modeling [111]. The integration of these transient 

constitutive laws and further, mathematical modeling is a 

challenging task. From all the above discussion it is 

observed that the temperature and stress-strain distribution 

in the strand region of the continuous casting process plays 

an important role in defining the quality of the final 

solidified product [27, 112-114]. In 2006, Liu and Zhu [103] 

developed a three-dimensional finite-element heat-transfer 

and thermal stress models to study the thermo-mechanical 

distortion on the slab during operation. They reported that 

operating parameters i.e., casting affected the strand 

distortion in copper walls of the mould. Pascon and 

coworkers (2006) [115] studied the generation of transverse 

crack during bending and straightening of strands. The 

numerical model was applied and validated with industrial 

data. The transverse cracks were found at the upper face of 

the strand. A numerical model was presented by Fachinotti 

et al. (2006) [100] to study the macro-segregation defects in 

strand caused by thermal stress. They made a hypothesis 

about the transient effect of alternate rolling and bulging. 

To measure surface temperature and shell thickness, finite 

point method was used by Alizadeh et al. [2]. They 

compared FPM results with FVM results. It was concluded 

that heat transfer, surface temperature, and shell thickness 

can be successfully modeled by FPM method. 
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