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Abstract: Prior to dispatch of sinter to the blast furnace for hot metal production, the sinter product from the sinter cooler is 

screened to remove smaller/finer particles. The undersize so generated is called internal return fines, which are generally 

recirculated into the sintering machine. A very high level of internal return fines generation limits the use of virgin ore for 

sintering which may hamper sinter productivity. Recently, the sinter plant at Tata Steel’s Kalinganagar works has faced issues 

of high internal return fines generation. As the sinter plant begins to increase its productivity levels, it becomes critical to 

control the generation of internal return fines to allow fresh material consumption. Limited literature is available on factors 

affecting the internal return fines generation in sinter plant. Given the current computational capabilities, a machine learning 

model was developed to ascertain the factors affecting the internal return fines generation. The development of the machine 

learning model and the optimization carried out based on model output is described in this work. The key parameters affecting 

the internal return fines generation were the sintering rate, sinter basicity, charge density and temperature in the ignition hood. 

In Kalinganagar, the increase in ignition hood temperature was limited by the furnace refractory condition. Further, the sinter 

basicity is determined by the percentage of sinter in blast furnace burden. Incorporating these constraints, the model was used 

to optimize the process parameters to generate the lowest possible return fines. The understanding generated from this machine 

learning framework has resulted in a reduction of 2-3% in internal return fines generation, which implied higher net sinter 

production. 
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1. Introduction 

Sintering process is the most widespread method to 

agglomerate iron ore fines in the Indian steel industry. At 

Tata Steel’s Kalinganagar (TSK) works, sinter is the major 

agglomerate in the blast furnace burden. During the 

sintering process, a mix of iron ores fines, fluxes and solid 

fuel (coke breeze), previously homogenized and pelletized, 

are discharged onto a moving strand and leveled to form a 

homogeneous bed. An ignition furnace starts combustion of 

the upper layers at the beginning of the strand. A large fan 

sucks air down through the bed through the wind boxes 

equipped with thermocouples that measure the temperature 

of the sucked gas. The sinter product is formed along the 

strand through the physical and chemical processes 

occurring within the bed. Combustion of coke breeze takes 

place in a flame front which migrates across the bed. This 

flame front should reach the grate of the machine at a 

certain distance before the strand ends, since the cooling 

stage should begin in the last part of the strand [1]. Finally, 

the sinter is cooled in a rotary cooler using forced 
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convection through an upward flow of ambient air. After 

being discharged, the material is classified by a screen 

(generally 5 or 6 mm) and products of acceptable size are 

carried to the blast furnace by means of several conveyor 

belts. The smaller pieces of product are returned to be 

reprocessed. This undersize product stream is usually called 

internal return fines (IRF). When demand for sinter exceeds 

the production capability of sinter plant, it becomes 

imperative to reduce both internal and external (generated 

while screening at blast furnace) return fines. 

There is significant amount of literature available on 

factors that affect the generation of return fines at the blast 

furnace end. Jan et al [2] had studied the impact of return 

sinter fines from the blast furnace on the sintering process 

and its impact on productivity by varying the quantity of 

return fines in base mix. Bhagat et al [3] further studied the 

impact of Indian iron ores and sinter chemistry on external 

fines generation and its impact on recirculation in sinter plant. 

Use of machine learning to improve sintering process has 

been carried out in the past mostly with respect to sinter FeO 

prediction [4] and controlling quality of sinter based on 

development of quality indices [5]. 

Very limited literature is available on enablers to increase 

gross sinter and to generate lower internal return fines at 

sinter plant. The most common control philosophy is to 

control the ignition of the upper layers of the strand using 

expert loop systems, since the weakest sinter is generated in 

the top layers [6, 7]. The present study gains significance 

because the internal return fines (expressed henceforth as a 

percentage of base mix) generation was on the higher side at 

Tata Steel’s Kalinganagar works (~ 26-28%). 

 

Figure 1. Trend of internal return fines, TSK SP, 1st Nov 2018 – 31st May 2019. 

The trend shows certain spells where the internal return 

fines are low and other spells where it has been high. In the 

present work, an attempt is made to using advanced 

analytical tools such as Machine Learning algorithms on a 

sufficiently large data set to determine the levers that enable 

lower internal return fines generation. Machine learning is a 

subset of artificial intelligence that uses advanced 

computational algorithms to observe patterns in data sets and 

evolve prediction based on experience. Recent advances in 

computational technology coupled with large availability of 

measured data have helped to provide a strong foundation for 

process optimization using such tools. Machine learning has 

also been used elsewhere in the steel plant where there is 

limited knowledge and literature available regarding factors 

impacting the target parameter [8]. 

In recent years, there have been a number of recent 

literature is available that quantify the impact of iron ore 

fines quality on the sintering process [9, 10]. Further the 

impact of mineralogical composition of these ores and the 

impact of alumina from ores of Indian origin on sinter quality 

have also been studied [11-13]. The process control required 

to achieve desired sinter properties is also specified. Most of 

these works relate to reduction in external return fines from 

the blast furnace. There is limited literature available 

regarding their impact on internal return fines generation.  

2. Methodology and Model Development 

The sintering process involves a series of steps – handling 

of iron ore fines, blend preparation with prerequisite fluxes 

and solid fuel based on required sinter properties and target 

chemistry, reclaiming of blended material, control of 

granulation, control of sintering process and cooling - to 

obtain quality sinter as desired by blast furnaces. The return 

fines generated within the sinter plant is a result of several 

interacting parameters in these unit operations. With recent 

advances in computational and modelling capability, it is 

possible to ascertain these interactions and identify key 

enablers that would enable control of a resultant parameter – 

in this case, the internal return fines generation. A brief 

description of the modeling tools used in the present analysis 

are as below: 

a. Linear Multivariate Regression: As the name implies, 

multivariate regression is a technique that estimates a 

single regression model with more than one outcome 

variable. When there is more than one predictor variable 

in a multivariate regression model, the model is a 

multivariate multiple regression. 

b. Random Forest: Random forest algorithm is a 

supervised classification and regression algorithm. This 
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algorithm randomly creates a forest with several trees. 

The higher the number of trees in the forest, greater is 

the accuracy of the results. In simple words, Random 

forest builds multiple decision trees (called the forest) 

and glues them together to get a more accurate and 

stable prediction. The forest it builds is a collection of 

Decision Trees, trained with the bagging method. 

c. Boosted Regression with Stacking: In contrast to 

random forest which is a bagging method, in boosted 

regression one uses very simple classifiers as base 

classifiers, so-called “weak learners.” Here, we start 

with one decision tree stump and “focus” on the 

samples it got wrong. In the next round, we train 

another decision tree stump that attempts to get these 

samples right; we achieve this by putting a larger 

weight on these training samples. This method is 

continued till the best fit is achieved. 

For the present analysis, data set consisting of 26 input 

parameters mentioned in table 1 below are considered for the 

period from April 2018 to July 2019. The parameters are 

classified into pile, process and output parameters. Some 

parameters are further derived from the above set – these are 

classified as calculated parameters and are commonly used in 

the sintering process. 

Table 1. Input parameters to Machine Learning model. 

Pile Parameters 
Percentage of individual ores in pile (A, B, C, D), Percentage of revert material used, Crushing fineness of solid fuel and 

fluxes (-3.15 mm,%), solid fuel rate 

Process Parameters 
Machine Speed, Bed Height, Ignition Hood temperature, Burn Through Temperature, Combustion air inlet temperature, Burn 

Through Point length, Waste Gas temperature, Suction, Discharge end temperature 

Calculated Parameters Flame Front Speed, On strand cooling, Japanese Permeability Unit (JPU), Green Mix Permeability, Charge Density 

Sinter Chemistry Al2O3, MgO, FeO, sinter basicity (CaO/SiO2) 

 

The data are collected on an hourly basis cleaned for outliers 

and the three different techniques mentioned above are used to 

predict the internal return fines. The data are split into training 

set and testing set in the ratio of 70:30. The key results of the 

analysis are as shown below in Table 2. In the below table, 

RMSE refers to Root Mean Square Error, which is used here 

as an indicator of good model fit. The lower the RMSE, the 

closer the prediction is to the actual value of the estimate. 

Table 2. Model Output Results. 

Model Type Linear Multivariate Regression Random Forest Boosted with Stacking 

RMSE - training set 1.95 1.58 1.48 

RMSE - testing set  1.63 1.7 

Delta RMSE  0.05 0.08 

Correlation – training set 47% 65% 73% 

Correlation – testing set  64% 40% 

 

Of the above techniques, the random forest model is chosen 

based on the lower difference in correlation between the 

training set and testing set. The sample prediction is shown in 

figure 2 below. The model can predict the directionality and is 

quite close to the actual values, except at those points where 

the actual return fines generation is quite low, below 22%. 

Number of such data points is quite less and further online 

training of the model could provide a better prediction. 

 

Figure 2. Prediction (blue) vs Actual (orange) - Random Forest Model for 

Internal Return Fines Generation. 

3. Results and Discussion 

3.1. Permutation Feature Importance 

To ascertain the key factors impacting internal return fines 

generation, a permutation feature importance study was 

carried out. The study allows to identify key parameters that 

affect the internal return fines generations and rank them in 

order of their importance. This allows the operator to identify 

levers to control the process. The results are shown in table 3. 

It is clear from the table below that the internal return fines 

generation is impacted by the rate of sintering (Suction, burn 

through length, flame front speed), characteristics of the 

bonding phases (sinter basicity) and packing of the green mix 

on the sinter bed (charge density). 

Table 3. Key Factors Impacting Internal Return Fines Generation. 

Feature Ranking Parameter Type 

1 Burn through length Process 

2 Suction Process 

3 Sinter Basicity Product Chemistry 

4 Charge Density Process 

5 Flame Front Speed Process 

6 Ignition Hood Temperature Process 

7 Percentage of Ore D in pile Pile 

8 Percentage of Ore A in pile Pile 
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3.2. Effect of Sinter Basicity 

Of the quality factors, sinter basicity is found to have a 

significant impact on the internal return fines generation. The 

impact of sinter basicity is shown in figure 3 below, with 

internal return fines as percentage of base mix. Increasing 

sinter basicity results in lower internal fines generation, 

which is primarily due to formation of stronger bonding 

phases of silico ferrite of calcium and aluminum (SFCA) in 

sinter [14]. However, the basicity of sinter is determined by 

the percentage of sinter in the blast furnace burden. Since, 

sinter is the major component in blast furnace metallic 

burden at Tata Steel Kalinganagar (75-78%), sinter basicity is 

kept on lower side to control slag rate. Thus, there is limited 

scope to further vary the sinter basicity to optimize internal 

return fines in actual plant operations. 

 

Figure 3. Impact of sinter basicity. 

3.3. Effect of Charge Density 

The charge density, calculated from the green mix 

charging rate, machine speed and bed height (1) is to be 

operated at an optimized value to obtain good permeability. 

Higher charge density leads to increased resistance to gas 

flow, while a loosely packed bed can result in lower heat 

utilization in the sinter bed. So, an optimum charge density is 

required to balance the sinter bed permeability with sufficient 

heat transfer within the sinter bed. 

Charge Density �
����� ��� ��������

�������  ���! � "� � #�! $��%�� � ������� &�!��
 (1) 

The impact of charge density on internal return fines 

generation is shown in figure 4. 

 

Figure 4. Impact of charge density. 

3.4. Effect of Sintering Rate 

As observed in table 3, in addition to sinter basicity and 

charge density, sintering rate (measured by flame front speed 

and burn through length) also plays a key role in determining 

the internal return fines generation [15]. The plant operating 

regimes are classified based on the flame front speed, suction 

band and sinter basicity to arrive at an operating regime 

where internal return fines generation is optimized. At each 

sintering rate (flame front speed) levels, on-strand cooling 

rate or burn-through point length is targeted at the optimized 

value that reduces the internal return fines. The results of the 

analysis are as shown in table 4. The table also shows that 

there is close significance between actual and predicted 

values as per the model. 

Table 4. Internal Return Fines at Different Sintering Rates. 

Sinter Basicity, 

CaO/SiO2 

Flame Front Speed, 

mm/min 

Optimized Burn Through Point 

Length, m 

Internal Return Fines%, 

Predicted 

Internal Return 

Fines%, Actual 

1.7 

18 111.2 25.9 25.4 

21 111.2 26.1 26.3 

24 110.0 26.3 26.7 

1.85 

18 111.8 25 24.6 

21 111.2 25.3 24.8 

24 110.6 25.5 25.6 

2 

18 114.2 24.2 23.1 

21 114.2 24.5 24.8 

24 113.0 24.7 25.2 

 

Based on the analysis carried out and on understanding the impact of various parameters on the internal return fines 
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generation, the process conditions were optimized to reduce 

the internal return fines generation by 2-3% (figure 5), given 

the constraint of sinter basicity and sintering rate as per the 

blast furnace requirement. 

Prior to the development of the model, there was a lack of 

clarity on the process parameters that could be controlled to 

maintain the internal return fines generation in an acceptable 

band. The model could provide a fair prediction of the 

expected internal return fines generation and provide 

suggestions on operating band of controlling parameters. This 

enabled the operator to adjust the process parameters to reduce 

internal return fines generation in case of excess deviation. 

 

Figure 5. Internal Return Fines Generation at Tata Steel Kalinganagar. 

4. Conclusions 

Tata Steel Kalinganagar sinter plant had issues of high 

internal fines generation. However, limited literature was 

available on factors affecting internal return fines generation 

So, to better articulate the factors affecting the internal return 

fines generation, an extensive study starting from pile 

blending to sintering process parameters was pursued. 

Advanced analytic and statistical techniques have enabled us 

to identify key parameters affecting the internal return fines 

generation. Among the machine learning techniques, the 

Random Forest model prediction algorithm was found to 

have a good fit with actual values. The key parameters 

affecting the internal return fines generation were the 

sintering rate, sinter basicity, bed charge density and ignition 

hood temperature. In Kalinganagar, the increase in ignition 

hood temperature was limited by the ignition furnace 

refractory condition. Further, the sinter basicity is determined 

by the percentage of sinter in blast furnace burden, which 

limited drastic revisions in sinter basicity. Based on these 

operating regimes, the process parameters were optimized to 

generate the lowest possible return fines based on the model 

results. The understanding generated from machine learning 

has resulted in a drop in 2-3% in internal return fines 

generation. The machine learning modelling technique has 

many favorable features such as speed, optimization and 

simplicity, which makes it a useful choice for modeling 

complex systems. The model is further being developed to 

provide feedback on a real time basis to the operator using 

prescriptive analytics to enable real-time control. 
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