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Abstracts: Multiscale modeling has become an essential tool in understanding and designing materials and physical systems 

with characteristics at multiple length and time scales. Although modern computational techniques are able to track the 

material behaviors from the nano-scale atomic vibrations at femtoseconds to the macroscopic plastic deformations of metals at 

seconds, simulations of physical phenomena of engineering interest are often limited by overwhelming computation time. The 

objective of multiscale methods is to predict the important physical behaviors without resolving the full details of the system, 

through averaging/coarse-graining the structure in length and/or extracting the slow time-scale dynamics. This paper reviews 

the state-of-the-art multiscale methods with applications in material science and biological systems. 
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1. Introduction 

Multiscale modeling and simulation is a rapidly 

developing field of research over the last three decades. Even 

though mathematicians have long studied multiscale 

problems, the profound significance of this topic has been 

drawn attraction in applied sciences and engineering, in 

particular, material science, mechanics sciences, and biology. 

Materials and systems can often exhibit different features at 

different scales, in terms of length and/or time. For example, 

shape memory alloys with heterogeneous microstructure may 

show distinct hysteresis loop compared [2, 10, 12]; Folding 

time for the proteins is approximately on the order of seconds 

while the vibration of the covalent bolds is at femtoseconds 

[34, 52]; The deformation of metal is governed by continuum 

mechanics under a typical loading rate of 10
-3

-10
0
s but the 

nano-scale phenomena follows the Schrodinger's equation in 

quantum mechanics with a characteristic time scale of 

attoseconds [42]. 

We use ‘fine-scale’ and ‘coarse-scale’ to refer to the 

physics at the two distinct scales. Here, fine-scale problems 

refer to the behaviors at the quantum or atomic level with a 

characteristic time scale between attoseconds and 

femtoseconds, while coarse-scale problems stand for the 

mesoscopic or macroscopic phenomena with a typical time 

scale between microseconds to seconds. For many practical 

problems, it is simply impossible to represent or resolve the 

full details of the fine-scale problem due to the 

overwhelming computational costs. Therefore we must seek 

alternative approaches that are more efficient and affordable. 

The computational techniques aimed at efficient 

representation or solution of such fine-scale problems. The 

approaches for multiscale modeling can be classified into 

‘top-down’ and ‘bottom-up’ [61]. The top-down approach 

involves solving the fine-scale phenomena from the coarse-

scale behavior, while the bottom-up approach aims at 

obtaining the coarse/effective behavior given the physical 

governing laws at the fine scale. According to the nature of 

the problem, multiscale methods can be also categorized into 

multiple length-scale and multiple time-scale approaches. 

Engineers are often interested in the characteristic material 

properties and biological processes at the mesoscopic level, 

but lack a general theory for describing such problems. It is 

reasonable to assume that coarse scale behavior is affected by 

the underlying physics at the fine scale. For example, it is 

well recognized that the mesoscopically observed plastic 

behavior of metal is due to dislocation creation, propagation 

and accumulation at the atomic scale; Protein folding that 

happens on the order of seconds is influenced by the 

vibration of covalent bonds at femtoseconds. For engineering 
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and biological applications, it is important to develop reliable 

yet affordable scale transition methods in which a multiscale 

modeling approach would make a difference. 

This paper will focus on discussing a class of bottom-up 

approaches that present the state-of the-art, which is followed 

by the applications of multiscale approaches on some of the 

problems in material sciences and biological process. 

2. Multiple Length-scale Approaches 

2.1. Mathematical Homogenization 

Mathematical homogenization is a technique of retrieving 

a homogenous (or effective) equation for a partial differential 

equation with highly oscillatory coefficients [43, 44, 51]. 

Consider the problem 

, ( , ) , ,
u x

a x u x t x
t

ε
ε

ε
 ∂  = ∇ ⋅ ∇ ∈ Ω  ∂   

           (1) 

with the boundary condition 0uε
∂Ω

= . In this problem (1), 

the multiscale nature comes from the coefficients ( , )a x x ε , 

which contain two scales: a fine scale of ( )O ε  and a coarse 

scale of (1)O . This two-scale feature can be used to 

describe many important physical processes such as heat 

conduction and phase transformation in a composite material. 

Denote y x ε=  and assume that ( , )a x y  is periodic in y  in 

an idealized setting. Following [44], uε
 can be expanded 

using asymptotic expansion as 

2
0 1( , ) ( , ) , , ( ),

x
u x t u x t u x t Oε ε ε

ε
 = + + 
 

          (2) 

where 1ε <<  and 0u  is normally the homogenized solution 

that satisfies 

0
0( ( ) ( , )) in ,

u
A x u x t

t

∂
= ∇ ⋅ ∇ Ω

∂
           (3) 

and the boundary condition 0 0u ∂Ω = . Note that the fine 

scale variables no longer exist in (3) and ( )A x  may be 

thought of as being the effective coefficient presenting the 

overall properties of the system on the coarse scale of (1)O . 

Determining ( )A x  often requires solving a unit-cell 

problem. In the one-dimensional case, ( )A x is simply given 

by the harmonic average, i.e. 

1
1

0

1
( ) .

( , )
A x dy

a x y

−
 

=  
 
∫                             (4) 

2.2. Cohesive Zone Model 

Cohesive zone model (CZM) [45] is a finite element-based 

computational model in the field of fracture mechanics to 

determine the possibility of crack extension and the direction 

of crack growth and branching. The crack takes place across 

an extended crack tip, or cohesive zone. One of the main 

aspects of CZM is to study the fracture of crystalline 

materials by modeling the microstructure as grains and grain 

boundaries. The constitutive equations of grains and grain 

boundaries take different forms due to their distinct 

deformation mechanisms. The grain boundary model requires 

evolutionary equations taking into account micromechanical 

physical phenomena such as grain boundary sliding, grain 

boundary cavitation, plus grain boundary embrittlement. For 

example, in high temperature creep rupture, the constitutive 

law for grains is taken to be 

,

1
,

3
,

2

e C
ij ij ij

e
ij ij kk ij
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ij e

e

E E

s
B

ε ε ε
ν νε σ σ δ
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+= −

=
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                   (5) 

where ijεɺ  is the total strain rate, 
e
ijεɺ  is the elastic part and 

C
ijεɺ

 
is the creep strain rate; σ  is the stress tensor, E  and ν  

are respectively the Young’s modulus and Poisson’s ratio; ijs  

and eσ  are respectively the deviatoric stress tensor and 

equivalent stress; and B  and n  are creep parameters. The 

constitutive equation for grain boundary composes of two 

parts. One is due to grain boundary separation given by 

( *),c b nHδ δ δ σ σ= + −                          (6) 

where cδ  is the opening displacement due to void nucleation 

and growth, and bδ  can be roughly attributed to the 

decohesion of the grain boundaries between cavities and is 

activated when the normal stress nσ  reaches a critical value 

*σ , and H  is the Heaviside function. The second 

contribution is grain boundary sliding along the surface. A 

popular model assumes the grain boundary as a Newtonian 

fluid, 

1 1

2 2

,

,

b

b

u

u

τ η
τ η

=
=

ɺ

ɺ
                                  (7) 

where 1uɺ  and 2uɺ  are the sliding rates in the two tangent 

directions; 1τ  and 2τ  are the corresponding interfacial shear 

tractions, and bη  is the grain boundary viscosity. 

CZM works for any physical materials given appropriate 

material models. It is easily to implement in commercial 

finite element software since it follows the standard 

formulation in continuum mechanics. 

2.3. Quasi-continuum Method 

Quasi-continuum (QC) method analyzes the mechanical 

deformation of crystalline solids based on atomic models. In 
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the continuum theory of nonlinear elasticity, the governing 

equation for linear momentum balance takes an equivalent 

form as a variational problem, 

min ( ) ( ) ,
u

E u f u dx

Ω

= ∇∫                       (8) 

where u  and E  denote the displacement field and the total 

elastic energy, respectively; f  is the stored energy 

functional, dependent on the external loading or boundary 

conditions. In practice empirical methods are often adopted 

to determine f . QC method was proposed in [55] for the 

analysis of crystalline materials, in which the fine-scale 

model is taken as the molecular mechanics of atoms that 

make up the crystals. The coarse-scale problem is assumed to 

be at the macroscopic scale in which finite element method is 

applied. The material consists of finite element triangle 

elements with standard continuous piecewise-linear basis 

functions. Therefore, u∇  is constant within each element. 

Let K  denote the finite element and ( )KE u  be the elastic 

energy in K , which depends on the constant deformation 

gradient 
K

u∇  within this element. Therefore, the total 

energy in the QC setting becomes 

( ) ( ),K K

K

E u n E u=∑                             (9) 

where Kn  is the number of unit cells in K . This approach 

provides a general framework for estimating f rater than 

treating it empirically. Note that the effective property f on 

the coarse scale can be computed on the fly using fine-scale 

models from molecular mechanics. 

3. Multiple Length-Scale Approaches 

3.1. Center Manifold Theory 

The center manifold theory was developed by Carr et al. 

[13, 14], which is applied to an autonomous system of 

ordinary differential equations (ODEs) with the general form, 

( , ),

( , ),

dx
Ax f x y

dt

dy
By g x y

dt

= +

= +
                              (10) 

where x  and y  are n −  and m −  dimensional vectors, 

respectively; A  and B  are constant square matrices where 

the real parts of eigenvalues of A are all zero while the real 

parts are all negative for B ; and finally, f  and g  are simply 

non-zero functions of variables x  and y  which are at least 

2C  continuous. Let S  denote a set of solutions of this 

system ( ( ), ( ))x t y t  for 0t > . The set S is a local invariant 

manifold if any solution of this system starting from an initial 

condition ( (0), (0))x y  stays within this set for a finite period 

of time T . The set S  is called an invariant manifold if

T → ∞ . The dynamics of the variables x  and y  can vary 

fundamentally determined by the eigenvalues - x follow a 

more or less monotonic trend and can be regard as the coarse 

(i.e. retained) variables, while y behave in an oscillatory 

mode and are the fine variables. Moreover, the fine variables, 

y , can be parameterized on the coarse phase space via

( )y h x= , which is called a center manifold if 

(0) 0, '(0) 0,h h= =  and y  is an invariant manifold for h  is 

smooth. The coarse-scale problem becomes a n  -

dimensional dynamical system, which presents the flow u , 

on the center manifold, 

( , ( )).
du

Au f u h u
dt

= +                     (11) 

By substituting ( ) ( ( ))y t h x t=  into the second equation of 

(10), we obtain a (usually nonlinear) system of partial 

differential equations, 

[ ( , ( ))] ( ) ( , ( )),
du

Ax f x h x Bh x g x h x
dt

+ = +            (12) 

together with the initial conditions (0) 0, '(0) 0,h h= =  

formulate the governing equations for the fine variables (i.e. 

center manifold). In general there are more than one center 

manifold in (10), therefore, h is not uniquely determined by 

x. This requires sophisticated numerical algorithms to solve 

(12). 

3.2. Young Measure Approach 

The Young Measure approach was first proposed by 

Artstein et al. [4] with the aim to examine the limit behavior 

of the following system of ordinary differential equations 

1
( , ),

( , ),

dx
f x y

dt

dy
g x y

dt

ε
=

=
                           (13) 

where 0ε → . (13) is called a slow-fast system in which 

explicit separation of time scales exist with x  and y  are the 

coarse and fine variables, respectively. The slow-fast system 

is often written on the slow time scale, :s tε= , as 

( , ),

( , ),

dx
f x y

ds

dy
g x y

ds
ε

=

=
                          (14) 

In the classical approach, for example, the Tikhonov 

approach [59], the limit dynamics has been shown to 

converge to a system of differential algebraic equations 

(DAEs) 
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( , ),

0 ( , ),

dx
f x y

ds

g x y

=

=
                        (15) 

However, the Young measure theory [4] shows that the fast 

dynamics converges to an invariant (probability) measure 

that is drifted by the slow dynamics. More generally, for any 

continuous function F , 

0

0

, ,
, ,( ( )) ( ) ( ) ,

n

x y
s x y

R

F y s F r r dr
ε µ→ ∫           (16) 

where 0, ,
( )

x y
y s

ε
 
denotes the solutions of the fast system at the 

slow time s with x fixed and 
0, ,s x yµ

 
is the invariant measure 

(i.e. Young measure) that can be approximated numerically as 

averages of M Dirac masses at M  values of y , i.e. 

( )0

0

(0), ( ),
, ,

1

1
( ) ,

M
x s y

s x y i

i

y t
M

µ δ
=

≈ ∑               (17) 

where 0(0), ( ),x s y
y  is the fast flow on the fast time scale and it  

is the discrete time interval in the fast run with initial 

condition 0y  and the coarse variables x  hold constant. 

Normally M  has to be large enough for the fast flow to 

converge to an asymptotically stable attractor. 

Averaging of the coupled slow and fast motions were 

studied in [5, 9]. The non-autonomous case (i.e. the right-

hand-side vector of the fast system is also a function of time) 

was investigated in [4, 8]. For the dynamical systems without 

explicit separation of time scales, a rigorous theory was given 

in [7] and the application of this theory to a discrete KDV-

Burgers type equation was performed in [6]. 

3.3. Macro-Micro Filtering 

The problems considered in [24, 25, 32] are stochastic 

differential equations with multiscale features given as, 

0

( , ) ( ),

1
( , ) ( ),

,

x x

y

y

m m m

dx
f x y W t

dt

dy
g x y W t

dt

v x

σ

σ
ε ε

σ

= +

= +

= +

ɺ

ɺ                 (18) 

where x  and y  present the coarse- and fine-scale variables, 

respectively, with distinct time scales characterized by small 

ε ; σ  and Wɺ  denote the noise strength and white noise in 

time, respectively; mv  denotes the noisy observation of 

( )m mx x t=  at discrete observation time interval (i.e. coarse 

time scale), 1m mt t t+∆ = −  with m  being the coarse time step, 

and 
0
mσ  is the Gaussian noise. Moreover, let tδ  denote the 

fine time step. 

The dynamical system (18) has no clear separation of 

timescales. In this case, the fine-scale dynamics is coupled 

with the coarse model directly and the fine model retained a 

memory of its initial conditions, therefore, fine-scale solutions 

can be obtained from running the fast flow equation while 

freezing coarse-scale variables as in the Young measure theory 

and PTA. The macro-micro filtering (MMF) algorithm consists 

of two parts: a ‘macro-filter’ that deals with the coarse-scale 

problem with partial information from fine-scale model and a 

‘micro-filter’ that essentially solves an inverse problem for 

matching the fine variables with parameterized coarse 

variables. The aim of MMF is to generate a posterior ensemble 

of , 1 , 1{ , , 1, , }k m k mx y k K+ +
+ + = ⋯ , given a posterior ensemble 

, ,{ , , 1, , }k m k mx y k K+ + = ⋯  at previous time step, where K

denotes the ensemble size; Here, the superscript ‘+’ and ‘-

‘indicate prior and posterior variables before and after filtering, 

respectively. The procedure of MMF is as follows: 

1. Run the fine dynamics of (18) with initial conditions 

,k my+
 to generate a fine-scale prior ensemble 

,{ , 1, , }k m N ty k Kδ
−

+ = ⋯
 
while fixing the coarse variable 

at ,k mx x+= , where N  is the number of total fine steps 

and N t tδ < ∆  to guarantee computational efficiency. 

2. Compute the time average of the prior ensemble of fine 

variables, i.e. 

1
,

1

.

K

m N t k m N t

k

y K yδ δ
− − −

+ +
=

= ∑                 (19) 

3. Obtain the prior ensemble of coarse variables , 1k mx−
+  

at 

the next coarse time step (the ‘macro-filter’) by 

, 1 , ,k m k m

dx
x x t

dt

− +
+ = + ∆                     (20) 

where dx dt  can be approximated from the previous result

m N ty y δ
−

+= . 

4. Estimate the posterior ensemble , 1k mx+
+  using ensemble-

based filtering techniques. 

5. Determine the posterior ensemble of the fine variables 

, 1k my+
+  (the ‘micro-filter’) by solving the inverse 

problem, 

1

2

1min ( ) .
m

m
Ry

x h y
+

+

+
+ −                  (21) 

From the timesaving’s point of view, besides the 

requirement of N t tδ < ∆  as in PTA, the computational cost 

of the minimization solver has to be taken into account. 

4. Multiscale Modeling in Length and 

Time 

4.1. Parameterized Locally Invariant Manifolds 

The method of Parameterized Locally Invariant Manifolds 
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(PLIM) [3] stems from invariant manifold theory [33, 39] 

and averaging theorem [21, 60]. This method works for 

autonomous dynamical systems without explicit separation of 

time-scales (i.e., no distinction of fine or coarse variables in 

the system) in the general form 

*( ) ( ( )), (0) ,
df

t H f t f f
dt

= =               (22) 

where f  is a vector field of variables and H  is a generally 

nonlinear function of f . The dynamical system (22) is the 

fine-scale problem where f  is called the fine variables. The 

novelty of PLIM lies in that the coarse variables can be 

defined as arbitrary time-averaged functions of fine-scale 

variables rather than instantaneous state functions based on 

the practical interest. Similar to the center manifold theory, 

the fine variables are computed and presented as local 

invariant manifolds via parameterization on the coarse phase 

space. Coarse variables are defined as 

1
( ) : ( ( )) ,

t

t
c t f p dp

τ

τ
+

= Λ∫                  (23) 

where τ  is the period of time averaging. Consequently, an 

augmented ODE system is derived as 

**

*

*

( ) ( ( )), (0) ,

( ) ( ( )), (0) ,

1
( ) [ ( ( )) ( ( ))], (0) ,

f

f f

f

df
t H f t f f

dt

df
t H f t f f

dt

dc
t f t f t c c

dt τ

= =

= =

= Λ − Λ =

  (24) 

where ff
 
denote the augmented fine variables and 

( ) : ( )ff t f t τ= + . The fine variables f  and ff  are 

parameterized on the coarse space as : ( )f G c=  and 

: ( )f ff G c= . The governing equations for solving the 

invariant manifolds are 

1
[ ( ) ( )] ( ),

1
[ ( ) ( )] ( ),

f

f f

f

G
G G H G

c

G
G G H G

c

τ

τ

∂  Λ − Λ = ∂  

∂  Λ − Λ = ∂  

               (25) 

by assuming G f=  and f fG f=  and substituting in (24). 

The dynamical behavior of coarse variables can be computed 

by 

1
[ ( ( )) ( ( ))].f

dc
G c G c

dt τ
= Λ − Λ                    (26) 

The method of PLIM allows more freedom to select coarse 

variables and the characteristic timescales of coarse 

dynamics compared with the center manifold theory. 

However, non-uniqueness of the local invariant manifolds 

remains an issue and needs to be treated with care. One thing 

to note is that the coarse variables, c , can exhibit dynamical 

behavior on a coarser length scale when Λ  is taken as the 

spatial average of the fine states f , therefore, PLIM predicts 

a dynamical behavior (26) that can be coarser both in length 

and time. 

4.2. Practical Time Averaging 

The problems of interest here are slow-fast ODE systems 

(13). While Young measure theory provides us with the limit 

dynamics of fast flow (i.e. fine variables), the approach of 

Practical Time Averaging (PTA) [57, 58] is able to estimate 

the evolution of time averaged phase functions of the fast 

flow on the slow time scale. PTA can be regarded as a 

coupling between the Young measure theory and generalized 

method of averaging While the Young measure theory shows 

that the fast flow may not converge to an equilibrium of the 

standard DAE system as given in the Tikhonov approach, the 

idea of PTA is to check whether the limit dynamics of the 

time averages of the fast flow or the functions of the fast flow 

converges to the DAE of the Tikhonov method. The coarse 

variables and their evolution are written as 

1
( ) : ( ( )) ,

1
( ) [ ( ( )) ( ( ))],

s

s
c s y p dp

dc
s y s y s

ds

τ

τ

τ
τ

+
= Λ

= Λ + − Λ

∫
       (27) 

where τ  is the period of time average. Generate the 

sequence on ε  of smooth functions 0,y
c

ε
 and the coarse 

evolution equation (27)2 becomes 

0

0

0

,
, ( ),

, ( ),

1
( ) [ ( ( ))

( ( ))],

y
x s y

x s y

dc
s y s

ds

y s

ε
ε τ

ε

τ
τ

+= Λ +

− Λ
         (28) 

Taking the limit on both sides of (28) using the result from 

the Young measure theory (16) leads to 

0

0

0

, ( ),

, ( ),

1
( ) ( ) ( )

( ) ( )

n

n

y

s x s y

R

s x s y

R

dc
s r r dr

ds

r r dr

τ τµ
τ

µ

+ +


= Λ




− Λ



∫

∫

     (29) 

where 0y
c  denotes the weak limit of the sequence of the 

coarse variables 0,y
c

ε
 and is the variable of interest. PTA 

involves the following steps to solve the coarse-scale 

problem (29): 

1. Approximate the right-hand-side vectors of the coarse 

theory (4.8) using (17), i.e. 
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0

0

0

(0), ( ),
, ( ),

1

(0), ( ),
, ( ),

1

1
( ) ( ) ( ),

1
( ) ( ) ( ).

n

n

M
x s y

s x s y

iR

M
x s y

s x s y

iR

r r dr y
M

r r dr y
M

τ
τ τ

µ

µ

=

+
+ +

=

Λ ≈ Λ

Λ ≈ Λ

∑∫

∑∫
 (30) 

2. Compute coarse variable at the next coarse step s T+  

using the Forward Euler scheme, i.e. 

0

0

, ( ),

, ( ),

( ) ( ) ( ) ( )

( ) ( ) , .

n

n

s x s y

R

s x s y

R

T
c s T c s r r dr

r r dr T

τ τµ
τ

µ τ

+ +


+ = + Λ




− Λ >



∫

∫

           (31) 

3. Start from new initial conditions 0y  that match x  and 

c  at s T+ . 

4. Repeat. 

The main difficulty in PTA is the non-uniqueness of fine 

states 0y  that correspond to the coarse scale variables x  and 

c . An optimization step is often applied to select the nearest 

fine state from the previous one. As in PLIM, the coarse 

variable can be defined as the spatial and time averaged 

functions of the fine states. 

4.3. Heterogeneous Multiscale Modeling 

Heterogeneous Multiscale Method (HMM) [1, 50, 61, 62] 

is a general framework for multi-scale modeling. The term 

‘heterogeneous’ is used to emphasize that the models at 

different scales may be of different nature, e.g. molecular 

dynamics at the fine scale and continuum mechanics at the 

coarse scale (note that in the original papers of HMM, fine 

scale and coarse scale are termed as micro scale and macro 

scale, respectively). The main idea is to solve the 

preconceived coarse-scale model with missing information 

obtained from the fine-scale model. Suppose the fine-scale 

system takes the form 

( , ) 0,f u d =                                 (32) 

where u  is the state variable and d  is the data needed for 

the set-up of the fine-scale problem. 

The coarse-scale model is taken to be 

( , ) 0,F U D =                               (33) 

where U  is the coarse state of the system, and D  stands for 

the missing component to be obtained from (a part of) the 

fine system (32). The procedure is as follows: 

1. Solve the coarse model (33). 

2. Estimate the missing data D  by running a number of 

constrained fine simulations. The constraint is imposed 

to make sure the coarse data D  and fine-scale variables 

are consistent, i.e., ( )d d U= . Usually ergodicity 

assumption and an explicit separation of timescales are 

needed. 

3. Solve the fine-scale model (32) to generate the missing 

coarse-scale data U . 

Compared with other multiscale approaches (e.g. PLIM 

and PTA) that apply for dynamical systems with multiple 

time scales, HMM provides a more general strategy for a 

variety of problems in which multiscale modeling is 

desirable, for example, stochastic simulation algorithms with 

disparate rates and elliptic partial differential equations with 

multiscale data. Note that the multiple time-scale approaches 

discussed in Section 3 can fit into the framework of HMM, 

where capturing the coarse-scale behavior from fine 

dynamics is still the most challenging part. 

In practice, one needs to explore as much as possible prior 

knowledge about both the coarse-scale and fine-scale models 

and make use of any features of the physical problems (e.g. 

time-scale separation, self-similarity etc.). 

4.4. Markov State Models 

The Markov state models (MSMs) [40, 53] deal with various 

problems in molecular dynamics (MD) simulations of 

biomolecules and crystalline materials. The main idea is to 

partition the conformational space into discrete sub-state, 

identify the kinetically relevant conformational states and the 

rates of interconversion between these states. Essential structural 

and dynamical properties of interest are based on the discrete 

sub-states. Some assumptions are required: one is that the 

transitions between the states in the partitions are memoryless, 

that is, the dynamics of the system jumping into the next state 

depends on the current state only, but is stochastic; the second 

assumption is that the molecular dynamics converges to a 

unique invariant measure (i.e. ergodicity property); and finally, 

the states are metastable such that typical trajectories remain 

within a region for sufficient long periods of time before 

transiting into another metastable state. 

MSMs aim to approximate the effective dynamics that 

described by the transition statistics between metastable 

states and to qualitatively understand the multiple time- and 

length-scale behaviors beyond which are accessible by direct 

MD simulations. Significant work needs to be done to 

accurately predict the kinetics, identify the optimal partition 

of the conformational spaces and relate MSMs to 

experimental data. 

5. Applications and Future Challenges 

Multiscale methods have a wide range of applications in 

material science. Many materials have the heterogeneous 

structures in nature or by fabrication, such as cement and 

concrete [37, 46], crystalline alloys [18, 36], bulk metallic 

glasses [17, 29, 47, 48], shape memory composites [12, 20, 63] 

and reinforced polymers [19, 67, 68]. Cementitious materials 

can be modeled as lattice elements that consist of unhydrated 

cement and hydration products [49, 56]; Cohesive zone model 

has been extensively applied to investigate the failure 

mechanism of alloys [26-28, 66, 69]; Modern homogenization 

techniques have been developed to study random composites 
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[15, 35, 38] as well as heterogeneous materials such as 

biological tissues [30] and Neo-Hookean-type composites [23, 

54, 65] with large deformations. 

Another application area of multiscale methods is in 

predicting and understanding the long time-scale behavior of 

bio-molecular systems such as DNA and proteins. DNA has 

the multiscale structure in nature with all the scales relevant 

for its functioning, ranging from full details of atomistic 

interactions to coarse grained representations of collections 

of hundreds of atoms as a few spherical beads connected by 

worm -like chain springs. Various coarse-grained models are 

developed to study structural properties such as helical pitch, 

torsion and flexibility [11, 16, 22], as well as the dynamical 

properties such as DNA binding [31, 64, 70-73]. Protein 

composes of various types of amino acids and shows 

complex features in structure, dynamics and interactions. 

Understanding the protein folding mechanism would be the 

main reason for developing coarse-grained methods, as it 

plays an essential functional role in living cells. One of the 

major challenge is to characterize the equilibrium ensemble 

of folding pathways and their relative probability. The 

Markov state model [41] provides an efficient way to extract 

the full ensemble of transition pathways via partitioning the 

state spaces into sub-level conformational spaces. 

Multiscale methods have been developed for over three 

decades and have been shown successful applications in a 

variety of fields, however, challenges still remain. One of the 

major issues is the reliability of the coarse-scale model. The 

fine-scale model is normally well defined with detailed 

information of the physical problems but requires a huge 

amount of computational times. Most multi-scale approaches 

rely on building up the coarse model with missing 

components that need to be obtained from the fine-scale 

model. The methods such as CZM and HMM require an 

appropriate coarse model to retrieve effective physical 

behavior at the coarse scale. Another challenge is the linking 

between the fine-scale data and the coarse-scale parameters. 

It is easier to compute the coarse variables given fine-scale 

data, however, in some cases, initial fine-scale data are 

required given coarse variables at a fixed slow time, for 

example, in PTA and HMM, which can be difficult due to 

non-uniqueness of fine solutions. Sophisticated techniques 

are needed to deal with this issue. Finally, better validation 

procedure of the coarse-scale physics is needed, which 

requires more advanced experimental tools. 
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